Focal Documentation Site
Focal is a modern Fortran module library which wraps calls to the OpenCL runtime API (using clfortran) with a higher abstraction level appropriate to the Fortran language.
In particular, Focal removes all references to c pointers and provides compact but extensible subroutine wrappers to the OpenCL runtime API. Moreover, Focal introduces typed buffer objects in host code which abstracts byte allocation away while providing built-in type safety. Focal also provides a customisable error handler for OpenCL API errors as well as a debug version containing useful runtime checks for ensuring OpenCL program validity.
Project status: v1.0.1 Stable release
Github: github.com/lkedward/focal
License: MIT
Prerequisites:
- GNU make utility
- Fortran compiler supporting the 2008 standard (tested regularly with
gfortran
7.4.0 & 9.1.0 andifort
19.1.0 ) - An OpenCL development library (One of: Intel OpenCL SDK, NVIDIA CUDA Toolkit, AMD Radeon Software )
Getting started
- Building the Focal Library
- Using and linking Focal
- Quickstart programming guide
- Example programs
- Lattice Boltzmann demo
Main features
- Removes use of c pointers to call OpenCL API
- Provides a level of type safety using typed buffer objects
- Decreases verbosity of OpenCL API calls while still providing the same functionality
- Abstracts away low level details, such as size in bytes
- Contains built-in customisable error handling for all OpenCL API calls
- Contains built-in 'debug' mode for checking program correctness
- Contains build-in routines for collecting and presented profiling information
Quick example
The following Fortran program calculates the sum of two large arrays using an OpenCL kernel.
program sum
!! Focal example program: calculate the sum of two arrays on an openCL device
use Focal
implicit none
integer, parameter :: Nelem = 1E6 ! No. of array elements
real, parameter :: sumVal = 10.0 ! Target value for array sum
integer :: i ! Counter variable
character(:), allocatable :: kernelSrc ! Kernel source string
type(fclDevice) :: device ! Device object
type(fclProgram) :: prog ! Focal program object
type(fclKernel) :: sumKernel ! Focal kernel object
real :: array1(Nelem) ! Host array 1
real :: array2(Nelem) ! Host array 2
type(fclDeviceFloat) :: array1_d ! Device array 1
type(fclDeviceFloat) :: array2_d ! Device array 2
! Select device with most cores and create command queue
device = fclInit(vendor='nvidia',sortBy='cores')
call fclSetDefaultCommandQ(fclCreateCommandQ(device,enableProfiling=.true.))
! Load kernel from file and compile
call fclSourceFromFile('examples/sum.cl',kernelSrc)
prog = fclCompileProgram(kernelSrc)
sumKernel = fclGetProgramKernel(prog,'sum')
! Initialise device arrays
call fclInitBuffer(array1_d,Nelem)
call fclInitBuffer(array2_d,Nelem)
! Initialise host array data
do i=1,Nelem
array1(i) = i
end do
array2 = sumVal - array1
! Copy data to device
array1_d = array1
array2_d = array2
! Set global work size equal to array length and launch kernel
sumKernel%global_work_size(1) = Nelem
call sumKernel%launch(Nelem,array1_d,array2_d)
! Copy result back to host and print out to check
array2 = array2_d
write(*,*) array2(1), array2(size(array2,1))
end program sum
Where sum.cl
contains the following openCL kernel:
__kernel void sum(const int nElem, const __global float * v1, __global float * v2){
int i = get_global_id(0);
if(i < nElem) v2[i] += v1[i];
}